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Assumptions about Assumptions about YouYou

• You sort-of-know a little about how
FMRI works
• e.g., You’ve paid attention today?

• You want to sort-of-know a little
about mathematics of FMRI analysis

• So you can read papers?

• So you can judge how appropriate an
analysis method is for your work?

• So you can start hacking out code?

CaveatsCaveats

• Almost everything herein has an

exception or complication, or both

• Special types of data or stimuli

may require special analysis steps

• e.g., perfusion-weighted FMRI

• Special types of questions often

require special data andand analyses

• e.g., relative timing of neural events



OutlineOutline

•• Signal Modeling PrinciplesSignal Modeling Principles

• e.g., generic ranting

•• Temporal Models of ActivationTemporal Models of Activation

• e.g., convolution

•• Noise Models & StatisticsNoise Models & Statistics

• e.g., prewhitening, resampling

•• Spatial Models of ActivationSpatial Models of Activation

• e.g., clustering, smoothing, ROIs

Signal Modeling PrinciplesSignal Modeling Principles
• Develop a mathematical model

relating what we knowknow (stimulusstimulus

timing and image datatiming and image data) to what we
want to knowwant to know (location, amount,location, amount,
timing, etc, of neural activitytiming, etc, of neural activity)

• Given data, use this model to solvesolve
for unknown parametersfor unknown parameters in the
neural activity (e.g., when, where,
how much, etc)

• Then test for statistical significance



The DataThe Data

• 10,000..50,000 image voxels
inside brain (resolution ! 2-3 mm)

• 100..1000+ time points in each
voxel (time step ! 2 s)

•Also know timing of stimuli
delivered to subject (etc)

•Behavioral, physiological data?

•Hopefully, some hypothesis

Sample Data: Visual Area V1Sample Data: Visual Area V1

Graphs of 3"3 voxels
through time

One slice at one time;
Blue box shows
graphed voxels



Same Data as Last SlideSame Data as Last Slide

Blowup of central time series graph:
about 7% signal change with a veryvery
powerful periodic neural stimulus

This is reallyreally  good data; N.B.: repetitions differ

Block designBlock design

experimentalexperimental

paradigm: visualparadigm: visual

stimulationstimulation

Event-Related DataEvent-Related Data

• White curve = Data (first 136 TRs)
• Orange curve = Model fit (R2 = 50%)
• Green = Stimulus timing

Four differentFour different

visual stimulivisual stimuli

Very good fit  for ER data

(R2=10-20% more usual).

Noise is as big as BOLD!



Why FMRI Analysis Is HardWhy FMRI Analysis Is Hard
• Don’t know true relation between

neural “activity” and BOLD signal:
•What is neural “activity”, anyway?
•What is connection between “activity”

and hemodynamics and MRI signal?

• Noise in data is poorly characterized
• In space and in time, and in origin
• Noise amplitude # BOLD signal
•Can some of this noise be removed?

•Makes both signal detection and
statistical assessment hard

Why So Many Methods?Why So Many Methods?
• Different assumptions about

activity-to-MRI signal connection

• Different assumptions about noise
($ signal fluctuations of no interest)
properties and statistics

• Different experiments and questions

•• ResultResult: %% Many “reasonable” FMRI
analysis methods

• Researchers mustmust understand the
tools!!  (Models and software)



Fundamental Principles UnderlyingFundamental Principles Underlying
Most FMRI Analyses Most FMRI Analyses (esp. GLM)(esp. GLM)::

  HRF HRF '' Blobs Blobs

•  HHemodynamic RResponse FFunction

• Convolution model for temporal relation
between stimulus and response

•  Activation BlobsBlobs

• Contiguous spatial regions whose
voxel time series fit HRF model

• e.g., Reject isolated voxels even if HRF
model fit is good there

Temporal Models:Temporal Models:
Linear ConvolutionLinear Convolution

•• Additivity AssumptionAdditivity Assumption:

• Input = 2 separated-in-time activations

••&& Output = separated-in-time sumsum of
2 copies of the 1-stimulus response

• FMRI response to single stimulus is
called the HHemodynamic RResponse
FFunction (HRFHRF)

• Also: Impulse Response Function (IRF)



Simple Model HRFSimple Model HRF

BriefBrief Stimulus at Stimulus at

time time t t = 1= 1

Model functionModel function

hh((tt  ) = ) = tt  
8.68.6ee  

––tt  //  0.5470.547

(Mark Cohen)(Mark Cohen)

Signal = HRF Signal = HRF ''  StimulusStimulus
““Event-RelatedEvent-Related””

Stimuli at timesStimuli at times

tt = 1,7,10 = 1,7,10



Block StimulusBlock Stimulus
22""20 sec20 sec
stimulusstimulus
blocksblocks

IdealIdeal
responseresponse
to 1 briefto 1 brief
stimulusstimulus

Some Some (incomplete)(incomplete) Signal Models Signal Models
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• One stimulus class: stimuli occur at times (s

• One stimulus class:
stimulus/activity occurs in 2 separated phases
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Delay between phases

Stimulus time

HRF: the analysis target!

• Models must be adjusted to
particular experimental design



Fixed Shape HRF AnalysisFixed Shape HRF Analysis

• Assume some shape for HRF=h(t )

• Signal model is r (t ) = h(t ) ' Stimulus
= “Convolution” of HRF with neural
activity timing function (e.g., stimulus)

• Model for each voxel data time series:

         Z(t ) = a)r(t ) + b + noise(t )

• Estimate unknowns: a = amplitude,
b=baseline, *2 = noise variance

• Significance of a !  0 && activation map

Variable Shape HRF AnalysisVariable Shape HRF Analysis
• Allow shape of HRF to be unknown,

as well as amplitude (deconvolution)

• Good: Analysis adapts to each
subject and each voxel

• Good: Can compare brain regions
based on HRF shapes

•  e.g., early vs. late response?

• Bad: Must estimate more parameters

& Need more data (all else being equal)



Aside: Baseline ModelAside: Baseline Model

• Need to model a slowly drifting
baseline, since the signal from people
fluctuates on time scale of 100 s or so

•Mostly due to tiny movements?

• Scanner fluctuations can also occur

• Usual method: include low frequency
expansion in signal model (“highpass

filtering”):
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HRF Model EquationsHRF Model Equations
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 Unknown = a  [b & c fixed]
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Next simplest model: derivative allows for time shift

 Unknowns = a0 and a1  [b & c fixed]
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h(t) = wq!q (t)

q=1

Q

"
Expansion in a set of

fixed basis functions {+q(t )}

(e.g., Splines, sines, …);

Unknowns = {wq}



Multiple Stimulus ClassesMultiple Stimulus Classes

• Need to calculate HRF (amplitude or
amplitude+shape) separatelyseparately for
each class of stimulus

• Novice FMRI researcher pitfall: try to
use too many stimulus classes

•• Event-related FMRIEvent-related FMRI: need 20++
events per stimulus class

•• Block design FMRIBlock design FMRI: need 10+
blocks per stimulus class

Combined Signal ModelCombined Signal Model
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Convolution

HRF model

Reorder sums

• Result: equation for unknowns

{!0, !1, wq} in terms of data Z(t)



Matrix-Vector FormulationMatrix-Vector Formulation

• Usually write equation in form:
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z =R! + "
• In matrix-vector notation:

Each column of RR is a time
series basis function, and each

element of !! is its amplitude in zz

Sample Variable HRF AnalysisSample Variable HRF Analysis

• !What"-vs-!Where" tactile stimulation

• RedRed && regions with What > Where

What HRF

Data from R van Boven: 1040 time points; 30 stimuli in each class

Where HRF
‘What’ HRF ‘Where’ HRF



(Linear) Inverse Modeling(Linear) Inverse Modeling

• Instead of using stimulus timing to
get HRF, could use an assumed
HRF to get activity timing per voxel

•• OrOr could use an assumed spatial
response (from a training/calibration run?)

to extract stimulus timing

• e.g., HBM 2006 Movie contest

• Linear equations, butbut  have swapped
roles of unknowns & knowns

Noise Models & StatisticsNoise Models & Statistics

• Physiological “noise”

• Heartbeat and respiration affect signal
in complex ways

• Subject head movement

• After realignment, some effects remain

• Low frequency drifts (, 0.01 Hz)

• Scanner glitches can produce
gigantic (#10 *) spikes in data



Physiological Physiological ““NoiseNoise””

• MRI signal changes due to non-

neural physiology during scan

• Can be approximatelyapproximately filtered out

with external measurements

• e.g., respiratory bellows, pulse

oximeter

• Somewhat harder than it sounds,

and is not commonly used (yet)

FluctuationsFluctuations::

16 images/sec
   (one slice)

   0.22 Hz0.22 Hz
       1.08 Hz1.08 Hz



Regression MethodsRegression Methods

• Solving this equation approximatelyapproximately:

• What method to use to solve for !!  ?

•• CanCan allow for statistics of " in solution
method

•• ShouldShould allow for statistics of " in solution
statistics

•• NeitherNeither of these points are trivial, fully-
resolved issues

� 

z =R! + " RR is NxM matrix
zz &  "  are N-vectors
!! is M-vector (M<<N)

Regression Methods IRegression Methods I

• Ordinary least squares:

• Derivable under assumption that " has N(0,
*2I) distribution (Gaussian white noise)

•• ProPro: simple, standard, robust

•• ConCon: not as statistically powerful as possible

• Prewhitened least sqrs:

• Derivable under assumption that " has

N(0,C) distribution (C = covariance matrix)

•• ProPro: as statistically powerful as possible given
the assumptions

•• ConCon: sensitive to estimation of C
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Regression Methods IIRegression Methods II

• Projected least squares:
• P = projection matrix, onto “acceptable”

subspace of data

•• ProPro: can remove à priori unwanted components
from data (e.g., low and high frequencies)

• L1 regression:

•• ProPro: robust against non-Gaussianity in "
•• ConCon: harder to estimate significance of

analytically; temporal correlation is also harder
to handle
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Inference on Inference on !!
••       contains the results about the HRF

• Can test individual elements in !! or

collections of elements for significant
difference from zero (“activation”)

• e.g., “was there a response to stimulus A?”

• Can test differences between elements or
collections of elements

• e.g., “was response to A different from B?”

• Tests usually expressed as tt or FF statistic

� 

ˆ ! 



Estimating Serial CorrelationEstimating Serial Correlation

• Can assume some model correlation
structure; e.g., AR(n) autoregressive
models
• Advantage is simplicity, not reality

• Can try to estimate C directly
• Possibly using neighboring voxels as well

• Or smooth estimates of C (or some of the

parameters in C) locally

• Usually start with OLS to estimate and subtract

“signal”, then estimate C from residuals

Adapting to Correlated NoiseAdapting to Correlated Noise

• Can adjust degrees-of-freedom in
OLS estimates of parameters to
approximate for correlation

• Including correlation induced by
projection via bandpass filters

• If “properly” done, prewhitened LS will
give full degrees-of-freedom with no
semi-ad hoc adjustments required

• Results can be sensitive to errors in C



Avoiding Some AssumptionsAvoiding Some Assumptions

•• AllAll statistical methods require
assumptions about noise

• Gaussianity, independence, …

• Can use modern statistical
resampling/permutation methods to
reduce the number of assumptions

•• VeryVery computationally intensive

• Substituting number crunching for
mathematical theory

Spatial Models of ActivationSpatial Models of Activation

• 10,000..50,000 image voxels in brain

• Don’t really expect activation in a
single voxel (usually)

•• CurseCurse of multiple comparisons:
• If have 10,000 statistical tests to

perform, and 5% give false positive,
would have 500 voxels “activated” by
pure noise — way way too much!

• Can group voxels together somehow
to manage this curse



Spatial Grouping MethodsSpatial Grouping Methods

• Smooth data in space before analysis

• Average data across anatomically-
selected regions of interest ROI
(before or after analysis)

• Labor intensive (i.e., send more
postdocs)

• Reject isolated small clusters of
above-threshold voxels after analysis

Spatial Smoothing of DataSpatial Smoothing of Data
•  Reduces number of comparisons

•  Reduces noise (by averaging)

•  Reduces spatial resolution
• Can make FMRI results look PET-ish

• In that case, why bother gathering high
resolution MR images?

•  Smart smoothing: average only over
nearby brain or gray matter voxels
• Uses resolution of FMRI cleverly

• Or: average over selected ROIs

• Or: cortical surface based smoothing

} Good

things



Spatial ClusteringSpatial Clustering

• Analyze data, create statistical map
(e.g., t statistic in each voxel)

• Threshold map at a lowish t value,
in each voxel separately

• Threshold map by rejecting clusters
of voxels below a given size

• Can control false-positive rate by
adjusting t threshold and cluster-
size thresholds together

Cluster-BasedCluster-Based  DetectionDetection



What the World Needs NowWhat the World Needs Now
• Unified HRF/Deconvolution ⊕ Blob analysis

• Time ⊕ Space patterns computed all at once,
instead of via arbitrary spatial smoothing
• Increase statistical power by using data from

multiple voxels cleverly

• Instead of time analysis followed by spatial
analysis (described earlier)

• Instead of component-style analyses (e.g., ICA) that
do not use stimulus timing or other known info

• Must be grounded in realistic brain+signal models

• Difficulty: models for spatial blobs
• Little information à priori ⇒ must be adaptive

Inter-Subject AnalysesInter-Subject Analyses
• Bring brains into alignment somehow

• Perform statistical analysis on
activation amplitudes

• e.g., ANOVA of various flavors

• Can be cast as a similar regression
problem, with “data” =

• Not yet tried much: analyze all
subjects’ time series together at once
in one humungoushumungous regression
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Summary and ConclusionSummary and Conclusion

• FMRI data contain features that are
about the same size as the BOLD
signal and are poorly understood

•• ThusThus: There are many “reasonable”
ways to analyze FMRI data
• Depending on the assumptions about

the brain, the signal, and the noise

•• ConclusionsConclusions: Understand whatUnderstand what
you are doingyou are doing & & Look at your data Look at your data
• Or you will do something stupid

Finally Finally …… Thanks Thanks
• The list of people I should thank is not
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   Et aliiEt alii  ……
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